
Scalability vs. Performance

Daniel M. Pressel
U.S. Army Research Laboratory

Aberdeen Proving Ground, MD  21005-5066

Keywords
supercomputer, high performance computing, parallel programming

Abstract

In the ideal world, the performance of a program running on a supercomputer would always
be proportional to the peak speed of the system being used.  Furthermore, the program would
always achieve a high percentage of peak (e.g., 50% or better).  In the real world, this is frequently
not the case.  Therefore, it is important to distinguish between the following five concepts:

(1) performance (run time),
(2) ideal speedup,
(3) hard scalability (fixed problem size speedup),
(4) soft scalability (scaled speedup), and
(5) throughput (how long it takes to run a collection of jobs).

This paper addresses these concepts and explains their meanings and differences.
Hopefully, this will allow readers to evaluate the behavior of programs and computer systems, and
most importantly, to evaluate their own expectations for running a program on a particular system
or class of systems.

Examples, which demonstrate these concepts, are drawn from a variety of projects and
include both problems from multiple computational technology areas (CTAs) and results from
outside of the Department of Defense (DOD).  In some cases, there will also be theoretical
arguments to help better explain the issues.*, †

1.  Introduction

In the ideal world, the performance of a program running on a supercomputer would always
be proportional to the peak speed of the system being used.  Furthermore, the program would
always achieve a high percentage of peak (e.g., 50% or better).  In the real world, this is frequently
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not the case.  Therefore, it is important to study and discuss performance metrics for parallel
systems and programming.  Two important uses of these metrics are:

(1) the evaluation of the behavior of programs and computer systems and

(2) the evaluation of expectations for running a program on a particular system or class of
systems.

The metrics that will be discussed in this paper are:

(1) performance (run time),
(2) ideal speedup,
(3) hard scalability (fixed problem size speedup),
(4) soft scalability (scaled speedup), and
(5) throughput (how long it takes to run a collection of jobs).

The discussion of these metrics will include a mixture of theoretical analysis and
experimental results.  The experimental results will come from a variety of disciplines but, in all
cases, will involve real codes (e.g., no benchmarks) with representative data sets.

2.  Performance

Most users are primarily interested in the following issues:

(1) the ability of the computer system to run their job;
(2) the correctness of the results;
(3) how fast does the job run once it starts running;
(4) how long will it take a series of jobs to complete; and
(5) when will the system start running their jobs.

The first, second, and fifth of these issues are beyond the scope of this paper.  The fourth
topic will be discussed in section 6.  Performance can be quantified as:
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For many jobs, one can specify either a minimum acceptable level of performance and/or a
desirable range for the performance.  This need not preclude the achievement of even higher levels
of performance.  However, there may be resource allocation issues that favor sticking to the
desirable range for the performance.  What is important to note is that the program with the highest
level of parallel efficiency may not be the program with the highest level of algorithmic efficiency*
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and vice versa.  Furthermore, the history of parallel computing contains numerous examples of
systems that would scale well, but on which it was notoriously difficult to obtain high levels of
serial performance (e.g., the Thinking Machines CM2/CM200, many systems containing the
Intel i860 microprocessor, and the Cray T3D [Bailey 1993; Simon and Dagum 1991; Simon et al.
1994; Bailey and Simon 1992; Oberlin 1999]).  Therefore, it can be seen that all of the terms in this
equation actively contribute to the delivered level of performance.  This is a very different point of
view from those who stress issues such as the following:

(1) The peak level of performance.

(2) The performance of a machine when running the unlimited size LINPACK benchmark
(a benchmark that tends to have a high correlation with the peak speed of a system).

(3) That so long as a system is highly scalable with an efficient interconnect, one can
“always” overcome a performance problem by using more processors (Simon et al.
1994).

Instead, what may be needed are combinations of programs and systems to run them on that
provide an acceptable range of performance (preferably measured in run time, as opposed to
MFLOPS) for a reasonable range of problem sizes and/or complexities.  For example, if two
programs can achieve similar results with similar levels of performance, for an acceptable range of
problem sizes, then it is unimportant if the combination of program A and machine A has limited
scalability past 64 processors and no scalability past
128 processors, while the combination of program B and machine B has good scalability to
hundreds of processors.  One might ask, how can this be?  Some of the rationale behind this
statement are:

(1) If the combination of program B and machine B needs the scalability just to match the
performance of program A and machine A then, at best, program B and machine B are
equal to program A and machine A.

(2) If one needs high levels of scalability to match another system’s performance, then the
cost effectiveness of the system must be considered.

(3) Scalability well beyond the planned size of a system is of primarily theoretical value.

(4) On most systems, most users have limited allocations and/or limited job priorities.
Therefore, the user may find it difficult to use more than a certain number of processors
at one time.  Again, this results in unlimited levels of scalability to be primarily of
theoretical value.

Of course, it is also possible that the combination of program B and machine B is not only
more scalable, but also performs at least as well as program A and machine A on a per processor
basis.  In such a case, there may be a strong reason for favoring the combination of program B and
machine B.



The following excerpts should help to demonstrate this point:

“One of the most intriguing aspects of linear elliptic boundary value problems (BVPs) is
their relationship to probability.
.
.
.
It is obvious that this algorithm faithfully implements the collection of statistics implied in
equation 2 in an “embarrassingly” parallel fashion.  ...  It also makes little difference if we
implement this algorithm on a shared or distributed memory machine (or a loosely coupled
group of workstations) since there is no interprocessor communication until the statistics are
centrally collected.
.
.
.
It is well known that these Monte Carlo methods are much inferior to many deterministic
methods for these types of problems”  (Mascagni 1990).

Additional material on this topic can be found in Singh et al. (1998) and Wang and Tafti
(1997).

3.  Ideal Speedup

Frequently, it is necessary to predict the performance of a program for a fixed problem size
when larger numbers of processors are used.  In other cases, one needs to consider the relative
merits of running two programs at once (each using half of the processors) vs. running the same
programs sequentially (each using all of the processors).  Questions such as these lead to the
concept of ideal speedup.

The most commonly used definition for ideal speedup is that the speed at which the
program runs on a particular machine is proportional to the number of processors being used.
Returning to the concepts discussed in section 2, this is equivalent to saying that the parallel
efficiency should be 100%.

Clearly from the standpoint of efficiency, unless the parallel efficiency is 100%, it is more
efficient to run two programs at once, rather than running them sequentially.  However, there are
frequently other concerns (e.g., memory requirements and/or minimum performance requirements)
that may outweigh this consideration.

There are many reasons why a program will not show linear speedup.  Many of these have
to do with limitations in the parallelization effort and/or inefficiencies in the hardware.  As such,
they are considered to be the cause for deviations from ideality.  These topics will be readdressed
later in this paper.  However, one can argue that for some algorithms, and in particular, for some
approaches to parallelizing those algorithms, that linear speedup is not the ideal speedup.  Probably
the most common example of this occurs when parallelizing a loop with M iterations when using N



processors.  If M is within about an order of magnitude of N, then the ideal speedup takes on the
appearance of a staircase.  This can best be seen in Table 1.

Table 1.  Predicted Speedup for a Loop With 15 Units of Parallelism

Number of Processors
Maximum Units of Parallelism
Assigned to a Single Processor Predicted Speedup

1 15 1.000

2 8 1.875

3 5 3.000
4 4 3.750

5–7 3 5.000

8–14 2 7.500

15 1 15.000

This behavior is commonly seen with programs parallelized using OPENMP and its
predecessors (it can also show up in other cases with a limited amount of parallelism [Bettge et al.
1999]).  Providing that a program is able to meet its performance criteria, it is probably not
appropriate to strongly penalize a program for this type of behavior.  Instead, one should take this
type of behavior into account when establishing the definition of ideal speedup.

This deviation from linear speedup is not an example of poor load balancing.  Poor load
balancing occurs when one or more processors receive significantly more work than the remaining
processors.  In this case, the distribution of work is limited by the limitations of integer arithmetic
and, therefore, should be considered to be perfectly balanced (even though some processors might
receive one more unit or work than another processor).  Similarly, this is not an example of
Amdahl’s law, since the loop is fully parallelized.

4.  Hard Scalability

When discussing the actual scalability of a program, one really needs to talk about the
combination of the program, the hardware, and the data set.  The earliest metric for scalability is
referred to as either hard scalability or fixed size scalability.  This assumes that one has a fixed
problem to solve and one wants to know how many processors are required to deliver an acceptable
level of performance.  There can be a number of reasons why the program will fail to deliver ideal
speedup.  Furthermore, on real distributed memory architectures running real codes and data sets,
one frequently finds that large data sets cannot be run using a single processor of an MPP (most
commonly due to insufficient memory).  Smaller data sets that can be run on a single processor of
an MPP may have a poor communication-to-computation ratio and, therefore, will show a low level



of scalability.  As a result of these problems, another metric was proposed, soft scalability, and it
will be discussed in section 5.

Many of today’s MPPs have powerful enough processors and enough memory per
processor that enable many problems to be run on just one or two processors, if only for the
purpose of running a scalability study.  Therefore, let us briefly consider the three most commonly
mentioned reasons for deviations from ideal speedup.

(1) Amdahl’s Law:  run time = serial run time + parallel run time.  As the number of
processors approach infinity, the parallel run time will asymptotically approach zero,
and the run time will asymptotically approach the serial run time.  Therefore, so long as
one cannot eliminate the serial run time, there is an upper bound on speed at which a
particular machine can run a particular job.

(2) Communication costs are nearly always a function of the number of processors being
used.  In some cases the function is a weak one (e.g., O(log(N))), while in other cases it
can be much stronger (e.g., O(N)).  This now gives us the following:  parallel run
time = parallel computation time + communication time.  Therefore, even if the serial
run time is zero, the run time will not asymptotically approach zero.  Instead, a plot of
the run time as a function of the number of processors used is expected to be U shaped.
In other words, there is a small range of processors for which the level of performance
will reach a maximum.  Past that point, the performance will actually drop off as the
number of processors is increased (Almasi and Gottlieb 1994).  It is important to note
that these costs are primarily a function of three things (the hardware, the number of
messages [along with their distribution], and the size of the messages).

(3) The load balance:  For example, if each part of an airplane’s outer surface is assigned to
a different processor, then one process would get most, if not all, of the fuselage.  Each
wing would be assigned to another processor, and, finally, the tail assembly would be
assigned to a small number of processors.  Assuming that all of the components are
grided at the same resolution, then the processor with the fuselage might be performing
upwards of 50% of the work.  This would limit the potential for parallel speedup to no
more than a factor of 2.  Clearly a better approach is needed.  Three commonly used
approaches are:

(1) Domain decomposition, which breaks up the larger zones into more manageable pieces.

(2) Processing the zones one at a time and parallelizing the processing of the individual
zones using loop-level parallelism or other techniques.

(3) Domain agglomeration, which would assign multiple zones to a single processor.  This
would be of little value in this case, but might be of value when all of the zones are
small, but the range of zone sizes cannot be ignored.  Recently, James Taft (a contractor
for the NASA Ames Research facility) has been giving talks on some work that he has
been doing in this area.



5.  Soft Scalability

Soft scalability is also known as scaled speedup and was first proposed by J. L. Gustafson
(1988).  It proposes that so long as the run time of a job remains roughly constant when the job size
and the number of processors increase at proportionally the same rate, then the job should be
considered to be scalable.  The advantage of this argument is that it allows one to get around the
limitations imposed by Amdahl’s Law.  In fact, for many programs, it can eliminate both that
limitation and problems with a poor ratio between communication and computation.

An excellent example of this approach at work was provided by Steve Schraml of the
U.S. Army Research Laboratory (ARL), Aberdeen proving Ground, MD.  When running CTH on
the SGI R12K Origin 2000 and the SUN HPC 10000s located at the ARL-Major Shared Resource
Center (MSRC), he measured the results in Table 2.

Table 2. The Scalability of the SGI R12000 Origin and the SUN HPC 10000
When Running CTH

Grind Time in microseconds/zone/cycle
Predictions Based on Scaling

System
Number of
Processors

Measured
1 Processor Data 8 Processor Data

1 36.979 36.979 N/A
2 20.479 18.490 N/A
4 10.355 9.2448 N/A
8 7.2749 4.6224 7.2749

16 4.0035 2.3112 3.6375
32 2.0599 1.1556 1.8187
48 1.4815 0.77040 1.2125
64 1.2456 0.57780 0.90936

SGI Origin

96 0.73997 0.38520 0.60624
1 47.558 47.558 N/A
2 25.622 23.779 N/A
4 11.875 11.890 N/A
8 7.0330 5.9448 7.0330

16 3.7468 2.9724 3.5165
32 1.8792 1.4862 1.7583
48 1.2385 0.99079 1.1722
60 1.1170 0.79263 0.93773
63 1.1075 0.75489 0.89308

SUN HPC 10000

64 1.1332 0.74309 0.87913



Two important objections to this approach are

(1) It doesn't address the problem of what to do if the speed at which problem A runs is
unacceptable.  Presumably, if one runs a problem N times larger using N times as many
processors, the speed will still be unacceptable.  The obvious answer is to use more
processors for the current problem size.  However, that raises the question of hard
scalability.  Potentially, this could result in some problems being run on so many
processors that while their overall performance is good, their poor processor
performance might be deemed to be unacceptable.  This can be an especially bad
problem if it causes one to run out of processors.

(2) This metric cannot be applied to any problem where the parallelism is not directly
proportional to the problem size.  In particular, when parallelizing the implicit CFD
code F3D while using loop-level parallelism, it was discovered that for two important
loops, there were dependencies in two out of three directions.  Therefore, each of the
dimensions of each zone is doubled, the amount of work increases by a factor of eight,
while the parallelism increases by only a factor of two.

These can be important objections, since using the wrong metric or an inappropriate metric
for the case at hand can lead to the wrong conclusions.  In some cases, this might result in one
choosing a suboptimal solution, while, in other cases, it might result in a project being abandoned
entirely.

6.  Throughput

While this metric is important to all users, it can be especially important to those users
running parametric studies.  These studies can be grouped into three categories:

(1) There are a large number of jobs to run, with no one job requiring a large number of
resources.  Furthermore, there are no dependencies between the runs, so one can, in
theory, run all of them at the same time.

(2) There are a significant number of jobs to run, but they require a moderate-to-large
amount of at least one resource (e.g., memory).  However, there are few, if any,
dependencies between the runs, so one may be able to run a limited number of these
jobs at one time.

(3) There are a significant number of jobs to run, with no one job requiring a large number
of resources.  Unfortunately, there are dependencies between the runs, so one is again
limited as to how many jobs can be run at one time.

The importance of these categories is that for a throughput optimized site, the first case may
be able to achieve an acceptable level of performance while using a limited number of processors
per job.  In the other two cases, one will almost always want to use a larger number of processors
per job.  Therefore, in those cases, the scalability of the job takes on added importance.



7.  Serial Efficiency

Most of this paper has dealt with the scalability.  Now let us return to the question of serial
efficiency.  Even if one is running similar programs based on the same algorithm using similar
parallelization strategies, differences in serial efficiency can significantly affect the performance of
the programs.  In particular, we will consider the performance of three versions of the F3D program
that was previously mentioned.  Marek Behr, formerly of the AHPCRC, produced two versions of
the code designed to run on distributed memory platforms.  One version used SHMEM calls and
could be run on either the SGI Origin 2000 or the Cray T3E.  The other version of this code used
the more portable, but arguably less efficient MPI calls.  The third version of the code was written
by Daniel M. Pressel and was based on compiler directives for loop-level parallelism.  As such, it
could only be run on a shared memory platform and is highly dependent on the design
characteristics of the platform being used.  Table 3 contains results from running these codes on
several different platforms for a 1-million grid point test case.

From the results in Table 2, one can see that there are a number of factors which can affect
the performance of a program.  The peak speed of the processor and the number of processors used
are only two of those factors.



Table 3. The Performance of Various Versions of the F3D Code When Run on Modern
Scalable Systems

System
Peak Processor

Speed
(MFLOPS)

Number of
Processors Used Version Speed

(time steps/hour)

SGI R12K Origin
2000

390
600

8 Compiler Dir.
SHMEM

793
382

SGI R12K Origin
2000

390
600
600

32 Compiler Dir.
SHMEM
Compiler Dir.

2138
989

2877
SGI R12K Origin
2000

390
600
600

48 Compiler Dir.
SHMEM
Compiler Dir.

2725
1083
3545

SGI R12K Origin
2000

390
600
600

64 Compiler Dir.
SHMEM
Compiler Dir.

2601
1050
3694

SGI R12K Origin
2000

390
600
600

88 Compiler Dir.
SHMEM
Compiler Dir.

3619
1320
5087

Cray T3E-1200 1200 8 SHMEM 349
Cray T3E-1200 1200 32 SHMEM 1062
Cray T3E-1200 1200 48 SHMEM 1431
Cray T3E-1200 1200 64 SHMEM 1705
Cray T3E-1200 1200 88 SHMEM 2443
Cray T3E-1200 1200 128 SHMEM 2948
IBM SP (160 MHz) 640 8 MPI 199
IBM SP (160 MHz) 640 32 MPI 342
IBM SP (160 MHz) 640 48 MPI 420
IBM SP (160 MHz) 640 64 MPI 423
IBM SP (160 MHz) 640 88 MPI 396
SUN HPC 10000 800 8 Compiler Dir. 999
SUN HPC 10000 800 32 Compiler Dir. 2619
SUN HPC 10000 800 48 Compiler Dir. 3093
SUN HPC 10000 800 56 Compiler Dir. 3391
SUN HPC 10000 800 64 Compiler Dir. 2819
HP V-Class 1760 8 Compiler Dir. 1632
HP V-Class 1760 14 Compiler Dir. 2392



8.  Conclusions

This paper has discussed a number of issues relating to the topics of scalability and
performance.  It has been shown that for some problems, the ideal speedup will resemble a stair
step rather than a straight line.  With this concept in hand, two ways for measuring scalability were
discussed, with emphasis placed on their strengths and weaknesses.  This discussion included
examples using these metrics.  Hopefully, this paper will help the reader in his/her work.  In
particular, it points out that while scalability is good, most users are concerned with performance
and throughput.
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Glossary

AHPCRC - Army High Performance Computing Research Center

CFD - Computational fluid dynamics

MFLOPS - Million floating point operations per second

MIMD - Multiple instruction multiple data

MPI - Message passing interface

MPP - Massively parallel processor

RISC - Reduced instruction set computer

SIMD - Single instruction multiple data
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